
Data Driven Adaptation of Heterogeneous
Service Oriented Processes

Georgios Athanasopoulos?

National and Kapodistrian University of Athens
Department of Informatics and Telecommuncations

gathanas@di.uoa.gr

Abstract. Within the currently forming pervasive computing environ-
ment services and information sources thrive. Instantiations of the service
oriented computing paradigm e.g. Web, Peer-to-Peer (P2P) and Grid
services are continuously emerging, whilst information can be collected
from several information sources e.g. materialisations of the Web 2.0 and
Web 3.0 trends, Social Networking apps and Sensor Networks. Within
this context the development of adaptable service oriented processes util-
ising heterogeneous services, in addition to available information is an
emerging trend. This paper presents an approach and an enabling archi-
tecture that leverage the provision of data-driven, adaptable, heteroge-
neous service processes. Core within the proposed architecture is a set
of interacting components that accommodate the acquisition of infor-
mation, the execution of service chains and their adaptation based on
collected information.

1 Dissertation Summary

Our era has been marked by a shift in the way of thinking and acting across many
domains such as business, science and community. Cornerstone in this new way
of thinking is the notion of service. In spite of the lack of a commonly accepted
definition a service can be conceived as a function that is offered by someone
and may be used by anyone else, or as Douglas Barry sets it more formally: a
function that is well-defined, self-contained, and does not depend on the context
or state of other services [1].

This shift in thinking and acting has an effect on software systems and the
way they are developed. Service Oriented Computing (SOC) focuses on the use
of services as system constituent parts. It is regarded as an evolution to the
Component-Based development and distributed object oriented computing, and
has been widely accepted as the current and future trend in distributed system
development. Among its goals is to promote the loose coupling and flexible in-
tegration of the system parts in a far better way than component and object
oriented technologies do.

? Dissertation Advisor: Aphrodite Tsalgatidou, Associate Professor



1.1 Service Oriented Process Adaptation

Service Oriented Processes (SOPs) constitute an indicative materialization of
the loose coupling notion of SOC, as they rely on the lenient integration of
comprising services. They are normally defined in higher-level languages, e.g.
BPMN [2], WS-BPEL [3], and provide descriptions of coordinated flows of con-
stituent (atomic or compound) services. One of their prime characteristics that
has contributed to their proliferated usage is their easy execution by contempo-
rary orchestration engines, e.g. Apache ODE 1.

Even though, SOP development is regarded as an evolution of Enterprise
Application Integration approaches [4], it is also a new paradigm that is referred
as Mega-Programming [5]. An inherently assigned characteristic, stemming from
this consideration, is that processes are expected to be long-running and stateful
as well as they may involve the interaction with stateless or stateful services. In
the frame of our approach, SOPs are regarded as systems, which operate within a
specific environment, and perform pre-specified activities, via the use of external
services, in an orderly manner producing and/or consuming related information
during their execution.

Nonetheless, in the currently forming Pervasive Computing environment, re-
sources such as services and information sources emerge with an increasing pace.
The Service-Oriented Computing (SOC) model has been instantiated by several
distinct paradigms, e.g. Web, P2P, OGC services, and a plethora of service in-
stances are emerging every day. In addition, the emerging Sensor Web [6], and
the materializations of the Web 2.0 [6] and Web 3.0 [7] paradigms, e.g. Social Net-
working applications, provide new types of information sources. In this context,
rendering SOPs able to tap onto these resources is becoming a necessity rather
than an option. These resources could be used for the adaptation of SOPs with
the goal to optimize their execution. Hence, processes should be flexible enough
in order to facilitate the use of services that have not been identified at design
time, irrespectively of their type, and the use of information that may stem from
emerging sources.

This notion of process adaptation differs from contemporary definitions, e.g.
Cassati et al [8], in that process adaptation should also support process optimiza-
tion. Hence, the benefits acquired by process adaptation should be measurable
in terms of specific indicators (criteria). The list of criteria that can be used for
the optimization of SOPs may comprise cost, execution time, throughput, etc.

In the scope of our research we argue that process adaptation should be used
for the optimization of the process execution time. An approach to achieve this
optimization is via the reduction of unnecessary process activities. Considering
the properties of SOPs, i.e. long-running activities, it is plausible to expect that
the reduction of unnecessary process activities can lead to smaller execution
times and as a result to higher throughput.

1 http://ode.apache.org/



1.2 Background

Nonetheless, when looking into contemporary approaches for the provision of
SOPs (dynamic or not) we see that they fail to accommodate all the afore-
mentioned constraints, i.e. reuse of several types of services and information
sources. For example process specification standards, e.g. WS-BPEL [3], or sim-
ilar approaches, e.g. JOpera [9], are incapable of supporting the provision of
adaptable processes. Even though they provide some form of flexibility, e.g.
late-binding, or few of them the ability to accommodate heterogeneous types
of services JOpera [9], they are capable neither to incorporate services, whose
interface is not prescribed at the process design time, nor to use information
from undefined sources.

More advanced approaches such as AI-based techniques, have been exten-
sively applied in the provision of dynamically composed service oriented orches-
trations [10]. Most of them focus on the provision of automatically constructed
orchestrations (or similarly called task plans) that comprise Web services solely
and neglect the information that may exist in the process environment, unless
this is accessible through services. Along the same lines, the Context Aware Com-
puting (CAC) research community has invested considerable efforts towards the
use of contextual information for the adaptation of web service compositions,
e.g. [11]. However, the majority of these approaches fail to address the interop-
erability concerns raised by the multiple instantiations of the service oriented
computing paradigm [12].

Modern approaches, such as the ones based on Aspect Oriented Program-
ming, e.g. [12], can provide the means for the adaptation of SOPs at runtime
through the weavering of appropriate aspects. Nevertheless, the specification of
hooks where these aspects will be integrated as well as the specification of the
actual aspects themselves is an arduous task that should be performed by the
process developer. In addition, when considering the vast amount of alternative
services and/or information sources that could be incorporated in a process, the
provision of the required aspects is becoming a daunting task.

Within this frame, the development of adaptable service processes, compris-
ing heterogeneous services and information stemming from existing sources, is
an emerging trend that calls for novel approaches.

2 Data Driven Adaptation

Our proposal to the specified requirements and research challenges is a set of mid-
dleware and tools catering for the provision of Data-Driven Adaptable Service
Oriented Processes (DDA-SOP) that comprise heterogeneous types of services.
The DDA-SOP approach is based on the combined use of a) the Tuplespace
paradigm [13], for the collection and exchange of information with unantici-
pated information sources, and b) AI planning techniques [14], for the discovery
of alternative execution paths that can exploit the collected information for the
adaptation of a given SOP.



The prime assumption of our approach is based on the observation that
a SOP, comprising heterogeneous services, should be able to use the informa-
tion available within its environment and adapt its execution accordingly. In this
frame, a process state is not solely depending on the values of its internal param-
eters, on the resulting outcomes from the invocation of its constituent services
and/or on its internal operations but, also on information pertaining to the pro-
cess environment, i.e. the process space; therefore, the latter should be taken
into account during process development and execution.

The proposed approach (see Fig. 2) is implemented by a set of tools and mid-
dleware that accommodate the following three basic functional needs: Collection
of contextual information; Execution of heterogeneous service processes; Process
adaptation driven by collected information. More specifically these components
are as follows:

– The Semantic Context Space engine (SCS engine) provides an open space
where external information sources may place relevant information; in our
context relevant information refers to semantically related information ele-
ments, which are structured and affiliated to concepts of a domain ontology.

– The Process Optimizer implements an AI planner that facilitates the discov-
ery of process plans, which control the execution and adaptation of service
processes at runtime.

– The Service Orchestration engine provides a BPEL-based engine that facili-
tates the execution of heterogeneous service orchestrations, whilst in parallel
accommodates the monitoring and reconfiguration of processes according to
the suggestions of the Process Optimizer.

Semantic Context Space Engine

Service Orchestration Engine 

Composite 

Service

Process Optimizer
Process 

Monitor

Space 1
Data 1

Data n

Shared Space

Data
Data 

Matchmaker

Service A
Constituent 

Service

Service 1
Service 2

Fig. 1. Figure - High-level architecture

The contributions of this work can be briefly summarized into the following:

– An approach for mapping the problem of Data-Driven Adaptation of Service
Oriented Processes to an extended, non-deterministic planning problem. To
accommodate this, we use observations as the means for checking both the
result of services invoked throughout the process and of the process environ-
ment, i.e. the space associated to a SOP. Details of the observed properties
are used for defining queries that are executed on the associated space.



– Appropriate algorithms for extending the definition of a non-deterministic
planning problem description with the inclusion of related observations and
activities. The proposed approach relies on the use of ontologies and similar-
ity measurements for the extrapolation of an original set of observations on
a given SOP. In essence, our approach introduces additional related sensors
for monitoring extra properties of a given SOP.

– A Generic Service Model capable of supporting the specification of common
as well as distinct characteristics of various types of services. This service
model enables us to use services irrespectively of their type in a seamless way.
Distinct features, e.g. spatial and temporal characteristics of OGC services,
provide us with required properties for customizing our approach, e.g. spatial
and temporal properties are used in querying for related information as well
as for discovering services.

– An environment catering for the provision of Data-Driven Adaptable Service
Oriented Processes comprising heterogeneous types of services. The provided
set of tools accommodates all functional needs of our approach, i.e. starting
from the optimization of a given SOP model with the inclusion of appropriate
adaptation steps, to the collection and exchange of related information with
a SOP running on the service orchestration engine.

In addition to this list of outcomes our approach also contributed to the:

– Design and implementation of an engine facilitating the collection and ex-
change of information annotated with several types of meta-information.
This engine is an open source, extendable implementation of a Tuplespace
service that includes extensions for the collection and exchange of informa-
tion, which is annotated with semantics, e.g. RDF-based, or WSML-based,
as well as spatial and/or temporal meta-information.

– Specification of a Peer-to-Peer Service Definition Language, namely PSDL,
with groundings for the description of JXTA services. PSDL is a WSDL-
based [?] language with extensions for the description of Peer-to-Peer ser-
vices.

– Design and implementation of a middleware catering for the dynamic invo-
cation of Peer-to-Peer services described in PSDL. This middleware is an
extension to the Web Service Invocation Framework [?] that uses PSDL
service descriptions for the static and dynamic invocation of Peer-to-Peer
services.

2.1 Process Optimization

Both the Semantic Context Space engine and the Service Orchestration engine
can facilitate the provision of service-oriented processes, which are capable of
exchanging information with external sources/actors. Nevertheless, the provision
of processes that are able to incorporate additional behaviors, i.e. in terms of
services, and information that is related to a given process, is facilitated via the
Process Optimizer.



Building on the representation of the automated process composition problem
as a non-deterministic, partially observable planning problem (see Def. 1) we
can reuse existing planners for the discovery of policies, i.e. conditional plans,
that guide the execution of a process for achieving a set of defined goals [15].
Conditions in such plans, expressed as if-then-else structures, assert the values
of specific observations and decide on the execution of specific sets of actions.

Definition 1. A non-deterministic, partially observable system (Σ) can be de-
fined as a tuple Σ = 〈S,A,R,O,X〉, where:

– S is the finite set of states of the associated state transition system,
– is the finite set of actions A = {ai|i ≤ n ∧ i, n ∈ N}
– R ⊂ S ×A× S is the transition relation,
– O is a finite set of observation variables O = {oi|i ≤ n ∧ i, n ∈ N}
– XO : S × {>,⊥} is the relation for the evaluation of observation variables
o ∈ O on each state s ∈ S. Within our context the value of an observation
variable is independent of the action that may have preceded

In the frame of such planning problems the transition relation R maps the exe-
cution of an action a ∈ A, on a state s ∈ S (assuming that a is applicable on s)
to possibly more than one successor states i.e. S′ ⊆ S, S′ ≥ 1 . An action a is
applicable on a state s ∈ S, if and only if, there exists a state s′ ∈ S such that
R (s, a, s′) stands. The set O contains the finite set of observation variables oi
whose values are evaluated at runtime. The value of each observation variable
at each state is defined by the observation relation X. A simplification normally
introduced to avoid the unnecessary complexities and to render the planning
problem finite, is to consider observation variables as boolean variables whose
values could be either true or false (i.e. {>,⊥}). Therefore if Xo (s,>) holds at
a state s ∈ S then the value of variable o at state s is True. The dual holds in
cases where variable o is False. In cases where both Xo (s,>) and Xo (s,⊥) hold,
variable o has an undefined value.

Nevertheless, even though this representation (Def. 1) is capable of support-
ing the non-deterministic and partially observable nature of services, it needs
additional extensions so as to accommodate the requirements of data-driven
adaptable processes [16]. Briefly the limitations of this representation are that
a) it cannot consider information, which comes from sources that are not pre-
specified, i.e. information that is neither produced by the interacting services,
nor the process at hand, and b) it fails to consider information that is related,
but not exactly what is expected by the process. To accommodate these con-
cerns we provide appropriate extensions, which consist of a) additions to the set
of observations (O) and the set of actions (A) so as to leverage the consideration
of related information, and b) a mechanism facilitating the valuation of obser-
vations (i.e. observation variables) based on queries executed over an open set
of information elements that can be collected from external sources.

These two extensions are implemented by the Process Optimizer and the
Semantic Context Space engine respectively. Although both extensions are of
equal importance for the provision of data-driven adaptable processes, in the
following we elaborate on the extensions of the observation and action sets.



2.2 Process Expansion

A crucial step in the provision of Data-Driven Adaptable Service-Oriented pro-
cess is the introduction of extensions to the observation and action sets of the
planning problem (Def. 1). This step can be regarded as the incorporation of
additional sensors for monitoring the process, along with appropriate actions for
handling the accruing believes. Nevertheless, this expansion processes should be
guided so as to avoid the introduction of an overwhelming set of observations
and actions that will make the planning problem practically intractable.

Starting with a WS-BPEL specification, called D hereafter, the first step is
to identify the initial set of observations and actions associated to the process
at hand. With regards to the initial set of observations, this should maximize
the coverage of process states, whilst the initial set of actions should include the
services associated to the process along with the process’s internal activities, e.g.
assign activities.

Similar to other existing approaches, e.g. [17], the most appropriate candi-
date for monitoring, i.e. assigning observations, is the set of interacting parties.
Interactions with external service providers can be modeled via the exchange
of messages over a set of predefined channels [17]; read and write operations
performed over these channels are the means for controlling the state of the
process. In this context, the initial set of observations includes observation prop-
erties, which monitor the outcomes of the services interacting with the process
at hand. It is important here to note that in the frame of our work we do not
consider observations for service interactions performed inside loop control struc-
tures. This is because such a consideration would entail an (explicit or implicit)
ordering on the set of observed properties so as to avoid consistency errors, e.g.
using observed information that is for a consequent execution step and not for
the current.

Given the set of original observations (O) and actions (A) along with the
related states (S), transition relations (R) and observation valuations (X), ex-
tracted from the provided process model D, the steps of the model expansion
process include a) the semantic-based extension of the observation set, b) the
extension of the action set with actions capable of supporting the exploitation
of the introduced observations and c) the consolidation of the extended action
and observation sets. In the following we provide additional details on each of
the comprising steps of the expansion process.

2.3 Observation Set Expansion

The underpinning assumption which drives the observation expansion is that
instead of considering partially matching results to the performed observations
we may as well look for exact matches to partially matching (i.e. similar) ob-
servations. Hence, the set of observations D linked to D is expanded with the
introduction of similar candidate observations.

Definition 2. An observation property o ∈ O can be defined as a tuple o =
〈nameo, vco, to〉 , where:



– nameo is the name of the observation,
– vco is the semantic concept associated to the given observation and
– to is the syntactic type, i.e. specifies the related domain of values for the

observation o.

To facilitate the expansion we introduce two additional features, i.e. an expan-
sion function (expo) and an expansion ratio property (rexp). The rexp property
dictates the minimum similarity distance (i.e. the cut-off value) between the
concepts of an ontology so as to consider them part of the same set (i.e. expan-
sion set). Thus, given an ontology (V ), a concept (vc) and an expansion ration
(rexp the expo function (see 1) returns all concepts of the provided ontology with
similarity to vc equal to or greater than rexp.

expo : R× V → 2V (1)

For the calculation of the expansion function (1) several similarity distance mea-
surements can be used. Such a measure providing an indication of similarity
between two concepts, i.e. vca, vcb ∈ V based on the IS-A relation hierarchy, is
Dices coefficient. We need to state here that our approach is capable of support-
ing additional measures through the inclusion of appropriate plug-ins.

Given the set of original observations OD that are semantically associated to
the concepts of an ontology V , applying expo generates a set of extra concepts. If
OV is the set of concepts assigned to the observations in OD, i.e. OV = {vcivci =
vcoi ,∀oi ∈ OD} , then O′

V contains the additional concepts introduced through
the expansion process (2).

expo (rexp, OV ) = O′
V (2)

This set of extended concepts (2) can be regarded as a set of candidate obser-
vations to be considered by the process D. However, this set of candidate ob-
servations is partially defined, as O′

V contains solely the semantic concepts (vci)
of the extended observations. Candidate observations should be refined so as to
specify their syntactic types (ti) and names as well. Moreover, the set of candi-
date observations should be pruned from observations (i.e. semantic concepts)
that cannot be handled by available actions. These refinements are presented
next.

2.4 Action Set Expansion

The set of actions (AD) originally specified for a process (D) point to service op-
erations that are already defined in the process specification. This set of actions
should be extended with the inclusion of additional actions, i.e. service oper-
ations, that will be able to use the extended set of observations. To facilitate
this extension we introduced a service query engine and appropriate heuristics.
The prime goal of this engine is to discover alternative service chains (Sc) com-
prising one or multiple actions (i.e. service operations) that can use as input
the extended observations and lead to the achievement of the process goals or
sub-goals.



Definition 3. Sub-goals Ssg in the context of this paper refer to intermediate
states of the specified process D, i.e. Ssg = SD − (S0 ∪G).

The service query engine uses as input the merged set of observation concepts,
i.e. OV ∪ O′

V , the set of process states (SD), and the set of process goals (G).
The outcome of the discovery process is a service chain Sc, which satisfies the
specified search objectives; a service chain Sc (see 3) is typically defined as a
finite, ordered set of actions (i.e. service operations).

Sc = {a0 ≺ a1 ≺ · · · ≺ an, and n ∈ N} (3)

In the frame of our approach we consider candidate service chains corresponding
to acyclic finite automata. This is in order to comply with the rule for shorter ex-
ecution paths; by introducing cyclic service chains we risk ending-up with longer
paths, depending on the iterations that may incur at execution time. Moreover,
we do not assign additional observations for monitoring the outcomes of the dis-
covered service chains. This is because introducing additional observations would
increase the complexity of the accruing planning problem, without modifying its
nature, e.g. render it fully observable, or providing additional benefits.

To accommodate the reuse of heterogeneous types of services, i.e. not just
Web services, we reuse and built upon a generic service model that facilitates the
modeling of the commonly shared and distinct characteristics of several types
of services [?]. According to this model a service is a collection of operations,
which are accessed by service clients via the exchange of appropriate messages
over the web at specific endpoints.

Given the set of features specified in the service model candidate service
chains should have input messages with concepts defined in the merged set of
observation concepts, i.e. Oc∪Oc′, and their outcomes should lead to either the
goal states (G) or sub-goal states (Ssg) of process D.

Nonetheless, the formulation of the respective service queries is primarily
controlled by the discovery strategy to be used. The two most appealing ones
are the forward and backward search strategies. In the backward search strategy,
the goal is to define service queries, which set constraints on the expected output
messages (Os) and post-conditions (Cpost) of a candidate action, in addition
to checking whether input messages contain ontology concepts related to the
merged concept set Oc∪Oc′. Contrary to that, in a forward search strategy the
goal is to define queries that constraint the input messages (Is), i.e. starting with
the ontology concepts of merged concept set Oc∪Oc′, and checking if a specific
process goal (G) or sub-goal (Ssg) is achieved. In the provided implementation
we employed a forward search strategy. The description of the employed strategy
is skipped for reasons of brevity.

Irrespectively of the applied search strategy and in order to avoid searching
through a very large set of candidate services, we exploit the given problem de-
scription for the introduction of appropriate search bounds and heuristics. Based
on the objectives set beforehand, the introduced adaptations should reduce the
set of actions used for achieving the goals (G) or sub-goals (Ssg) of process D.



Definition 4. We, introduce a function lenghtTo (sa, sb), which returns the dis-
tance, i.e. the cardinality of the set of transitions, between state sa and the re-
quested state sb of a process or of a given service chain (4).

lenghtTo : S × S → N (4)

Based on (4), for a process D with a set of starting states s0 and an intermediate
or goal state si ∈ {Ssg ∪G} , a candidate service chain Sc with a starting state
s0 and the same goal state si ∈ {Ssg ∪G} (i.e. Sc leads to the same state as in
D) a search bound can be expressed as follows:

lenghtTo (s0, si) > lenghtTo (s′0, si) (5)

Using this search bound we can avoid falling into an endless and iterative search
over a large set of candidate service chains. To further enhance the search pro-
cess we can also introduce additional heuristics, by exploiting knowledge from
the problem domain. In conclusion, the outcome of the action set expansion pro-
cess is a finite set of candidate service chains (6) for the given set of candidate
observations, when searching over a finite service registry:

SC = {Scvc|Scvc, vc ∈ OV ∪O′
V } (6)

2.5 Observation and Action Set Consolidation

The calculated candidate observation (O′
V ) and service chain sets (SC) contain

values that do not correspond to each other, hence before proceeding with the
formulation of the extended planning problem, i.e. ED, these sets should be
cleaned up. Thus, starting from the set of additional service chains Sc ∈ SC
each of the candidate observations, i.e. o′ ∈ O′

V that is not used from any of
the identified service chains, i.e. @Scvc ∈ SC ∧ vcSc = vco′ , is removed from
the candidate observations set. The pruned set of candidate observations O′′

V

contains all semantic concepts that are used by the identified service chains.
The next step, is the specification of the corresponding observation variables.

According to the definition given for an observation variable, i.e. Def. 2, apart
from the associated semantic concept, the syntactic type along with a name
are also required. Based on our hypothesis that each candidate observation, i.e.
o′ ∈ O′

V should be used by at least one service chain, i.e. Sc ∈ SC, we can safely
assume that the syntactic type of each observation variable should correspond to
the one expected by the candidate service chain, Sc. Nonetheless, as a candidate
observation may be used by several service chains we should introduce different
observation variables for each of these chains unless they use the same syntactic
type for the candidate observation; in the latter case we consider that they refer
to the same variable. Each of the newly introduced variables according to the
definition given in Def. 1 is expected to stand prior to the execution of the
related service chains, whilst in other cases it may be undefined. The resulting
observation variable set for the extended planning problem is the union of the
original observation and the pruned observations O′′, i.e. OED = OD ∪O′′.



Following the formulation of the extended observation variable set, the con-
solidation process continues with the merge of the extended action set ASC and
the accruing state sets, i.e. SSC , to the original action AD and state SD sets.
Since additional service chains Sc ∈ SC can be modeled as independent, finite
automata (i.e. STSSci), the resulting action and state sets can be calculated from
the composition [17] of the original process automaton with each of the additional
service chain automata, i.e. STSED = STSD ⊗STSSc0 ⊗STSSc1 · · · ⊗STSScn .

The formulation of the extended planning problem finishes with the speci-
fication of the initial and goal states of the extended planning problem. These
correspond to the constraints of the original process D. The resulting planning
problem can be then fed to an external planner for the identification of possible
solutions. The resulting solution corresponds to the automaton of the control-
ling process, i.e. the extended adaptable process, that can be transformed to a
WS-BPEL process model. This transformation process is not described here for
reasons of brevity.

3 Conclusions

The provision of adaptable Service-Oriented Processes (SOPs) in the currently
forming web is becoming a necessity as the number of untapped resources in-
creases. Within this new Web era, services, of various types, and information
are partially utilized by existing approaches tackling the provision of adaptable
SOPs. To this end our approach, the Data-Driven Adaptation of Service Oriented
Processes (DDA-SOP), can accommodate the provision of adaptable SOPs that
exploit both existing services, irrespectively of their type, and information, i.e.
semantically annotation structured data, for their adaptation. The main goal
of our approach has been the increase of the overall process performance. To
achieve this goal we re-design the given processes so that when related informa-
tion emerges at the process environment along with the use of existing services
we end up with smaller execution paths.

The evaluation of our prototype implementation has clearly shown that our
approach can lead into significant performance improvements even from small
adaptation rates. These improvements get even more evident in the case of long
running processes, where improvements appear from very small adaptation rates,
e.g. < 2%. As a result we also observed an increase in the throughput of the
executing process, i.e. the number of requests served per second, which is pro-
portional to the achieved performance gains. We have to note that the cost paid
for the calculation of DDA-SOPs may seem to counter the benefits accruing by
our approach. A crucial factor in the calculation of these costs is the complexity
and size, i.e. in terms of involved actions, of a given process model. Nevertheless,
considering that these costs are paid once prior to the deployment and execution
of the resulting DDA-SOP this is not a prohibiting cost.

The provided prototype implementation has unveiled a wide range of future
directions that deserve further research. These directions include improvements
and optimizations to our prototype implementation as well as emerging research



fields such as: a) investigation of the implicit interaction pattern as a mechanism
for the loose coupling of complex processes, b) use of different planning tech-
niques such as stochastic models, e.g. Markov based planning techniques, and c)
use of different similarity measurements for the discovery of related observations.

References

1. Barry, D.K.: Service-oriented architecture definition. Web Services and Service-
Oriented Architectures (2010)

2. OMG: Business process model and notation (bpmn), v. 2.0, 2011. OMG recom-
mendation

3. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web services business
process execution language version 2.0. OASIS standard (April 2007)

4. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services. Springer (2004)
5. Pautasso, C., Alonso, G.: From web service composition to megaprogramming. In:

Technologies for E-Services. Springer (2005) 39–53
6. Botts, M., Percivall, G., Reed, C., Davidson, J.: Ogc sensor web enablement:

Overview and high level architecture. In: GeoSensor networks. Springer (2008)
175–190

7. Spivack, N.: Web 3.0: The third generation web is coming (2006)
8. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.C.: Adaptive and

dynamic service composition in eflow. In: Advanced Information Systems Engi-
neering, Springer (2000) 13–31

9. Pautasso, C., Alonso, G.: Jopera: a toolkit for efficient visual composition of
web services. International Journal of Electronic Commerce (IJEC) 9 (Winter
2004/2005 2004) 107–141

10. Rao, J., Su, X.: A survey of automated web service composition methods. In: In
Proceedings of the First International Workshop on Semantic Web Services and
Web Process Composition, SWSWPC 2004. (2004) 43–54

11. Qiu, L., Shi, Z., Lin, F.: Context optimization of ai planning for services compo-
sition. In: (ICEBE’06) IEEE International Conference on e-Business Engineering,
IEEE (2006) 610–617

12. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented
framework for service adaptation. In: Service-Oriented Computing–ICSOC 2006.
Springer (2006) 15–26

13. Rossi, D., Cabri, G., Denti, E.: Tuple-based technologies for coordination. In:
Coordination of Internet agents. Springer (2001) 83–109

14. Russell, S., Norvig, P., Intelligence, A.: A modern approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs 25 (1995)

15. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

16. Athanasopoulos, G., Tsalgatidou, A.: An approach to data-driven adaptable ser-
vice processes. In: ICSOFT (1). (2010) 139–145

17. Pistore, M., Barbon, F., Bertoli, P., Sharparau, D., Traverso, P.: Planning and mon-
itoring web service composition. In: Artificial Intelligence: Methodology, Systems,
and Applications, 11th International Conference (AIMSA 2004). (2004) 106–119


